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ABSTRACT 

Donovan ' s  conjecture ,  on blocks of finite group algebras  over an  alge- 

braically closed field of  pr ime character is t ic  p, asser ts  t ha t  for any  finite 

p-group D,  the re  are only finitely m a n y  Mor i ta  equivalence classes of  blocks 

wi th  defect  group D. T h e  ma i n  resul t  of  th is  paper  is a reduc t ion  theorem:  

It suffices to prove the  conjecture  for groups  genera ted  by conjuga tes  of  D. 

A n u m b e r  of o ther  f ini teness resul ts  are proved along t he  way. T h e  ma in  

tool is a resul t  on ac t ions  of algebraic groups.  

1. In t roduc t ion  

One of the major unsolved problems in modular representation theory of finite 

groups is the following one. 

D O N O V A N ' S  CONJECTURE: For any prime p and any finite p-group D, there are 

only finitely many Morita equivalence classes of p-blocks of finite groups with 

defect groups isomorphic to D. 

The conjecture is known to be true when D is cyclic [2, 6] and (up to minor 

ambiguities) when p = 2 and D is dihedral, semi-dihedral or quaternion [5]. It 

is also known to be true when one restricts attention to p-blocks of p-solvable 

groups only [8]. The case of blocks of symmetric groups is dealt with in [13]. 
In this paper we reduce the general case of Donovan's conjecture to the special 

case of blocks with defect group D, in finite groups generated by conjugates of 
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D. A number of other results (which we consider to be interesting in their own 

right) are proved along the way. A brief outline is as follows. 

We use Dade's theory of block extensions [4] to write every p-block with defect 

group D (up to Morita equivalence) as a crossed product Y of a finite group X 

(whose order is not divisible by p and bounded in terms of D) with an algebra 

R which is the basic subalgebra of a p-block with defect group D, in a finite 

group generated by conjugates of D. We then prove a finiteness theorem for such 

crossed products. This finiteness theorem is in turn based on two other finiteness 

results. One of these shows that,  for any finite group G and any commutative 

G-algebra C over an algebraically closed field F whose characteristic p does not 

divide the order of G, the cohomology group Hi(G, U(C)) is finite for i _> 1. The 

other states that,  for any finite group G whose order is not divisible by p and any 

linear algebraic group H over F,  there are only finitely many homomorphisms 

G -* H, up to conjugation within H. These results together give the proof of 

our reduction theorem. 

For the rest of this paper, we denote by F an algebraically closed field of 

characteristic p (where we allow the case p = 0 for a while). 

2. Representations of finite groups in algebraic groups 

In this section we deal with homomorphisms from a finite group G into a linear 

algebraic group H over F. We refer to these homomorphisms as representa- 

tions of G in H. Examples are the linear representations (H -- GL(n, F)  for 

some n), p r o j e c t i v e  representations (H = P G L ( n , F )  for some n), orthogo- 

hal representations (H = O(n, F)  for some n), and s y m p l e c t i c  representations 

(H = Sp(2n, F)  for some n). Further examples are provided by G-algebras 

(H = Aut(A), the automorphism group of a finite-dimensional algebra A over 

F)  and by interior G-algebras (H = U(A), the group of units of a finite- 

dimensional algebra A over F).  Later in this paper we will consider the example 

where H = Out(A) = Au t (A) / Inn (A) ,  the outer automorphism group of a finite- 

dimensional algebra A over F. 

Two representations p, a of a finite group G in a linear algebraic group H over 

F are called equ iva l en t  if there is an element h E H such that a(g) = hp(g)h -1 

for g E G. We have the following finiteness result. 

THEOREM: Let H be a linear algebraic ~roup over an algebraically dosed field 

F of  characteristic p, and let G be a finite group whose order is not divisible 
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by p (e.g. p = 0). Then there are only finitely many equivalence classes of 

representations of G in H. 

The case where H = GL(n, F)  is an immediate consequence of Maschke's theo- 

rem. The general case was conjectured in an unpublished preprint by the author 

[11]. In that preprint it was also shown that in a "minimal" counterexample to 

the theorem G would be nonabelian simple and H would be simple of one of 

the exceptional types E6, Er, E8 or F4. In particular, the result was proved for 

solvable G and hence, by the Odd Order Theorem, for the case when p = 2. 

As a response to [11], the author received proofs of the theorem above by T.A. 

Springer and S. Donkin. Moreover, A. Borel pointed out that the result follows 

without difficulty from a paper by A. Weil [15]. These proofs make use of the 

fact that the set of all representations of G in H can be considered as an affine 

algebraic variety over F on which the linear algebraic group H acts morphically. 

We would like to take the opportunity to ask (as in [11]) whether the theorem 

above can be extended in the following way. 

QUESTION: Let F be an algebraically closed field of prime characteristic p, let 

H be a linear algebraic group over F, let G be a finite group, let P be a Sylow 

p-subgroup of G, and let p be a representation of P in H. Then, are there only 

finitely many equivalence classes of representations of G in H which contain a 

representation extending p ? 

This is true for the special case H -- GL(n, F)  since every FG-module M is 

isomorphic to a direct summand of IndpG(ResGp(M)). More generally, it is true 

for any reductive group H in good characteristic, as was recently proved by P. 

Slodowy [14]. His paper also discusses extensions of Weil's method for the proof 

of the theorem above. 

3. G-a lgebras  

Let G be a finite group. A G-a lgeb ra  over F is a finite-dimensional (asso- 

ciative and unitary) algebra A over F,  together with a fixed homomorphism 

G ~ Aut(A). We denote by J(A) the radical, by Z(A) the center and by U(A) 

the group of units of A. Then G acts on U(A) and we can form, in case A is com- 

mutative, the cohomology groups HI(G, U(A)). We have the following finiteness 

result. 
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PROPOSITION: Let G be a finite group, and let A be a commutative G-algebra 

over an algebraically closed field F whose characteristic does not divide the order 

of  G. Then, for i > 1, the cohomology group HI(G, U(A)) is finite. 

Proof  There is an isomorphism of G-modules U(A) TM U(A/J (A) )  x (1 + J(A)) 

so that  

Hi(G, U(A)) ~ W(G, U(A/J (A) ) )  x Hi(G, 1 + J(A)). 

Since the map 1 + J(A) ~ 1 + J(A), x ~-~ x Icl, is bijective, we have Hi(G, 1 + 

J(A)) = 0. Thus we can replace A by A / J ( A )  and therefore assume that A is 

semisimple. If A ~ A1 x A2 with G-algebras A1, A2 over F then 

Hi(G, U(A)) -~ Hi(G, U(A1)) x HI(G, U(A2)). 

Hence we may assume that A is a direct product of copies of F transitively per- 

muted under the action of G. Now Shapiro's Lemma implies that Hi(G, U(A)) 

HI(H, U(F)) for a subgroup H of G. We have an exact sequence 

1 , #(F)  --~ U(F) ~ U ( F ) / # ( F )  , 1 

where #(F)  denotes the group of all roots of unity in F and U(F) /# (F )  is a 

uniquely divisible group. Hence the long exact sequence in cohomology shows 

that Hi(H, U(F)) ~ Hi(H,/~(F)), and the latter group is certainly finite. | 

4. Crossed products  

Let G be a finite group. A G-g raded  r ing  is a ring A, together with a fixed 

decomposition A = ~ g c a  Ag into additive subgroups A s satisfying AgAh C_ Ash 

for g, h E G. In this case, A1 is a subring of A containing 1A. We are interested 

in classifying all G-graded rings where the identity component A1 is a given ring 

R. 

There are at least two sensible ways to define isomorphisms between such G- 

graded rings. We call two G-graded rings A = ~ g e a  Ag and B = ~ g e o  Bg with 

A1 = R = B1 weak ly  equ iva len t  if there is an isomorphism of rings r A ~ B 

satisfying r = Bg for g E G. Moreover, we call A and B equ iva len t  if r 

can be chosen to satisfy, in addition, r = idR. In the literature (see [7, 12]), 

usually equivalence classes of G-graded rings are considered. For our purpose, 

however, weak equivalence classes are more important. 
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We start by recollecting some of the known facts, at least for the special class 

of G-graded rings called crossed products. A G-graded ring A = ~ g e a  Ag is 

called a c rossed  p r o d u c t  if Ag N U(A) ~ 0 for g E G. In this case, AgAh = Agh 

for g, h E G. From now on, we fix a finite group G and a ring R and consider the 

class of crossed products A = ~ g e a  Ag of G with R, i.e. with A1 = R. 

A p a r a m e t e r  se t  of G in R is a pair (a, "y) of maps 

and 

satisfying 

a : G  ,Aut (R) ,  g ~ a s ,  

" ~ : G x G  ,U(R) ,  (g ,h) ,  , ' r (g ,h) ,  

Olg o O~ h ~ I..f(g,h) o Olg h and "y(g, h)~/(gh, k) = ag('r(h, k))~/(g, hk) 

for g, h, k E G; here tr denotes the inner automorphism R ~ R, x H rxr  -1, of 

R, for r C U(R). Two parameter sets (a, "~) and (~', ~/') of G in R are called 

equ iva l e n t  if there are elements r(g) C U(R) such that 

! 
~g = t~(g) o ag and "~'(g, h) = r(g)ag(r(h))7(g,  h)r(gh) -1 

for g, h C G. This does indeed define an equivalence relation on the set of all 

parameter sets of G in R. 

Every crossed product A = ~]~geG Ag of G with R defines an equivalence class 

of parameter sets of G in R in the following way. We choose Ug E Ag M U(A) 

for g E G. Then the map ag: R --* R, r H ugru~ 1, is an automorphism of R, 

and ~(g, h) := UgUhU-~ E U(R) for g, h E G. Moreover, (a, 'y) is a parameter 

set of G in R. We say that (a, 3,) is a parameter set de f ined  by  A. Note that 

(a, "~) is not unique since it depends on the choice of u s for g E G. However, all 

parameter sets of G in R defined by A form a unique equivalence class. 

Also, equivalent crossed products of G with R determine equivalent parameter 

sets of G in R. Conversely, every parameter set of G in R arises from a crossed 

product of G with R, unique up to equivalence. Thus: 

LEMMA 1: Equivalence classes of  crossed products of G with R are in bijection 

with equivalence dasses of parameter sets of G in R. 

Every parameter set (a, "r) of G in R induces a homomorphism 

w: G ~ Out(R) -- Aut (R) / Inn (R) ,  g,  ~ agInn(R ). 
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Moreover, w depends only on the equivalence class of (a, ~). Thus the set of 

all equivalence classes of parameter sets of G in R splits into disjoint subsets, 

according to the induced homomorphism G ~ Out(R). 

Conversely, however, not every homomorphism G ~ Out(R) is induced by a 

parameter set of G in R. A necessary and sufficient condition for this can be 

obtained in the following way. Let w: G --* Out(R) be a homomorphism, and 

write w(g) --- agInn(R) with a 9 E Aut(R) for g E G. Then the map G --* 

Aut(Z(R)),  g ~-~ aglZ(R ), is a homomorphism and independent of the choice of 

ag for g e G. We consider U(Z(R)) as a G-module via this homomorphism. We 

can write ago ah = tr(g,h) o agh with r(g, h) E U(R) for g, h E G. Then the map 

G x G • G , U(Z(R)), (g ,h , k ) ,  , r (g ,h ) - lag ( r (h , k ) ) r (g ,  hk)r(gh, k) -1, 

is a 3-cocycle, and the corresponding cohomology class in H3(G,U(Z(R)))  is 

independent of the choice of a 9 and r(g, h) for g, h E G. 

LEMMA 2: The map w arises from a parameter  set of G in R if and only if the 

corresponding element in H3(G, U(Z(R))) vanishes. 

Now let w: G ~ Out(R) be a homomorphism which is induced by a parameter 

set, and consider U(Z(R)) as a G-module via w. Then the group Z2(G, U(Z(R))) 

of 2-cocycles acts on the set of all parameter sets of G in R inducing w in the 

following way. For ( E Z2(G,U(Z(R))) and a parameter set (a,-~) of G in R 

inducing w, the parameter set ( (a ,  ~/) = (a ~, ~/) is defined by 

a '  := a and "r'(g, h) := ((g,h)~/(g, h) 

for g, h E G. It is easily checked that (a, "r) and r "r) are equivalent whenever 

is a 2-coboundary. Thus H2(G, U(Z(R))) acts on the set of equivalence classes of 

parameter sets of G in R inducing w, and in fact H2(G, U(Z(R))) acts regularly 

on this set. This shows: 

PROPOSITION 1: The equivalence classes of parameter sets of G in R inducing 

w are in bijection (usually not canonical) with H2(G, U(Z(R))). 

This means that equivalence classes of parameter sets of G in R can be para- 

metrized by certain pairs (w, () where w: G ~ Out(R) is a homomorphism, 

( E H2(G, U(Z(R))), and the corresponding action of G on U(Z(R)) is induced 

by w. 



Vol. 92, 1995 DONOVAN'S CONJECTURE 301 

Also, the group Aut(R) acts on the set of all parameter sets (a, 3') of G in R 

by P(a, 3") := (Pc, P3") for p E Aut(R) where Pa and P3' are defined by 

(Pa)g := p o ago p-1 and (P3")(g, h) := p(3"(g, h)) 

for g, h E G. Moreover, if (a, 3') and (a',  3") are equivalent parameter sets of G 

in R then so are P(a, 3") and P(a', "r'). Thus Aut(R) acts on the set of equivalence 

classes of parameter sets of G in R. 

It is easy to see that  two crossed products A = ~]~gea Ag and B = ~]~gea Bg 

of G with R are weakly equivalent if and only if the corresponding equivalence 

classes of parameter sets of G in R are in the same orbit under Aut(R). Thus: 

PROPOSITION 2: Weak equivalence c/asses of crossed products of G with R are in 

bijection with orbits o[ Aut(R) on the set of all equivalence classes of parameter 

sets of G in R. 

If a parameter set (a, 3') of G in R induces the homomorphism w: G ~ Out(R) 

then, for p E Aut(R), the parameter set P(a, 3") induces the homomorphism 

Pw: G -----* Out(R), g,  ~ p Inn(R)-w(g) ,  p - ' I nn (R) .  

Thus, in order to produce a set of representatives for the weak equivalence classes 

of crossed products of G in R, it suffices to pick one homomorphism G ~ Out(R) 

out of each conjugacy class under Out(R), and to compute H2(G, U(Z(R))) for 

every such homomorphism. 

We now use the main results of sections 2 and 3 to obtain the following finite- 

ness theorem. 

THEOREM: Let F be an algebraically closed field of  characteristic p, let R be an 

algebra of finite dimension over F, and let G be a finite group whose order is 

not divisible by p. Then there are only finitely many weak equivalence classes of 

crossed products of G with R. 

Proof: We consider Out(R) = Aut (R) / Inn (R)  as a linear algebraic group 

over F.  By the theorem in section 2, there are only finitely many equiva- 

lence classes of representations of G in Out(R). We pick such a representa- 

tion a: G --* Out(R). Restriction induces a well-defined map res: Out(R) = 

Aut (R) / Inn (R)  --* Aut(Z(R)),  and we consider Z(R) as a G-algebra via the ho- 

momorphism resoa: G ~ Aut(Z(R)). Now the proposition in section 3 implies 
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that H2(G,U(Z(R)) )  is finite. So the result follows from the discussion above. 
| 

5. Donovan ' s  con j ec tu r e  

In the following, we fix an algebraically closed field F of prime characteristic p 

and consider p-blocks of a finite group G as subalgebras of the group algebra FG. 

Our main result is the following one: 

THEOREM: Let p be a prime, and let D be a finite p-group. Then every p-block 

with defect group D has, up to isomorphism, the form S | T where 

(i) S is a complete matrix algebra over F, 

(ii) T = ( ~ e x  T~ is a crossed product, 

(iii) X is a finite pl-group whose order divides ]Out(D)l 2 where Out(D) denotes 

the outer automorphism group of D, 

(iv) the identity component TI o f T  is a p-block with defect group D, of a finite 

group H with H = (Dh: h E H). 

Proof." Let G be a finite group, and let A be a p-block of FG  with defect group 

D. We wish to prove that  A has the form as stated above. 

For any normal subgroup N of G, G acts by conjugation on the set of all 

blocks of F N .  It is well-known that  the blocks A I of F N  satisfying A A  ~ ~ 0 

(i.e. the blocks of F N  covered  by A) form a single conjugacy class under G (cf. 

Lemma B in [8]). Let W be one of these, and denote by GA, the stabilizer of A ~ 

in G. Then it is again well-known that  there is block A* of FGA,,  with defect 

group conjugate to D, such that  A is isomorphic to Mat([G : GA, [, F)  | A* (see 

Theorem C in [8]). 

This means that it suffices to prove the result for the block A* of FGA,. 

Repeating this argument as often as possible we see that we may assume that 

A is quas i -pr imi t ive ,  i.e. that, for any normal subgroup N of G, A covers a 

unique block of F N .  Thus let A be quasi-primitive in the following. 

We denote by H the subgroup of G generated by all defect groups of A: 

H := (Dg: g E G). 

Then H is a normal subgroup of G, and we denote by B the unique block of F H  

covered by A. It is well-known (cf. Proposition N in [9]) that  in this situation 
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every defect group of A is also a defect group of B, so 

{Dg: g E G} = {Dh: h E H}, 

and H = (Dh: h E H). Since B is G-stable, every element in G acts by conjuga- 

tion on B. This induces a homomorphism G --* hu t (B) .  We denote by K the ker- 

nel of the composite homomorphism G -~ h u t ( B )  -~ Out(B) = hut (B) / Inn(B) .  

Thus K is the normal subgroup of G consisting of all elements in G acting on 

B by an inner automorphism of B; in particular, H C_ K. We denote by C the 

unique block of F K  covered by A. Again, C has defect group D. 

It is a consequence of (3.5) in [4] that  1A E F K  (see also Corollary 4 in [10]). 

It follows easily that 1A = 1C; in particular, A is the unique block of FG covering 

C. It is well-known that  this implies that  X := G / K  is a pl-group (see Theorem 

61.5 in [1]). We consider FG as a crossed product of X with FK,  as usual. Then 

A = 1cFG becomes a crossed product of X with 1 c F K  = C. 

Since B and C have a common defect group, Theorem 7 in [10] and its proof 

imply that there is a simple subalgebra S of C s := {c E C: hch -1 = c for h E H} 

such that C H is isomorphic to S| Z(B) and such that C is isomorphic to SQF B 

where in both cases the isomorphism is simply given by multiplication. It follows 

that A is isomorphic to SQF CA(S), again by multiplication, where T := CA(S), 

the centralizer of S in A, is a crossed product of X with Cc(S) ,  and where Cc(S)  

is isomorphic to B. 

Thus we have proved all parts of the theorem with the exception of the assertion 

IX lllOut(D)l 2. For this last part of the proof we use another of the main results 

of [4]. (Since [4] is a long and technical paper, it may be helpful to the reader 

to look also at [3] which contains a summary of the main results in [4], including 

those we need here.) 

We denote by b a block of FDCH(D) in Brauer correspondence with B. Then 

b contains a unique irreducible Brauer character r and we denote by NG(D)r the 

stabilizer of r under the action (by conjugation) of Nc(D)  on Brauer characters 

of FDCH(D). Then, by (12.6) in [4], we have 

a = NG(D)r and K = CG(D)~H; 

here w: NH(D)r • CG(D)r ~ U(F) is a certain bilinear map, 

and Cc(D)~ denotes the group of all elements x E Cc(D) r  satisfying 
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w(y, XCH(D)) = 1 for all y 6 NH(D)r Thus CG(D)~,/CG(D)~ is iso- 

morphic to a subgroup of Hom(NH(D)r Since 

NH(D)c,/DCH(D) is naturally isomorphic to a subgroup of Out(D) we obtain 

Now 

where 

[Cc( D ) r / CG( D )~,[ [ lOut(D)[. 

IXl = [G/K[ = tNG(D)r 

= [NG(D)r162 [Ca(D)r I 

NG(D)r162 ~- NG(D)~/Nc(D)r N CG(D)r  

= NG(D)r162 

is isomorphic to a factor group of NG(D)r162 which, in turn, is isomor- 

phic to a subgroup of Out(D),  and where 

CG( D ) r / CG( D )~H ~- CG( D ) r / CG( D )r N CG( D )~H 

= CG(D)r 

= Ca(D)v/CG(D)~. 

Thus [X[[[Out(D)[ 2 as we wished to prove. | 

With notation as above, S| is Morita equivalent to T. The basic subalgebra 

of T1 has, of course, the form eTle where e is an idempotent in Th unique up to 

conjugation with units in T1. It follows easily that Y := eTe is a crossed product 

of X with eTle. Moreover, eTe is Morita equivalent to T since 

TeT = TTIeT1T = TT1T = T. 

Hence we obtain: 

COROLLARY: Let p be a prime, and let D be a finite p-group. Then every p-block 

with defect group D is Morita equivalent to a crossed product Y = ( ~ x  Yx 

satisfying the following: 

(i) X is a finite p'-group whose order divides [Out(D)[ 2, 
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(ii) the identity component Y1 of Y is a basic subalgebra of a block with defect 

group D, in a finite group H with H = (Dh: h E H). 

The important point is, of course, that,  for a given D, there are only finitely 

many possibilities for X. Moreover, the main result in section 4 implies that,  

given a finite pl-group X and a finite-dimensional F-algebra ]I1 there are, up 

to isomorphism, only finitely many crossed products Y with identity component 

Y1. Thus it suffices to show that there are only finitely many possibilities for YI. 

Since two F-algebras are Morita equivalent if and only if their basic subalgebras 

are isomorphic we conclude: 

PROPOSITION: In order to prove Donovan's conjecture, it suffices to show the 

following: 

For any prime p and any finite p-group D, there are only finitely many Morita 

equivalence classes of p-blocks with defect group D, in finite groups H with 

H = (Dh: h E H). 

If the question in section 2 could be answered positively, one could perhaps 

deduce stronger reductions for Donovan's conjecture. 

Let b be a p-block with defect group D in a finite group H. If D is a Sylow p- 

subgroup of H (e.g. if b is the principal p-block of H) then (Dh: h E H) = 0 v' (H). 

Hence, in the general case, the normal subgroup (Dh: h E H I of H can be 

considered as an analogue, for p-blocks, of OP'(H). We therefore propose to 

denote this subgroup by Ob'(H). The condition on H in the proposition then 

reads as H = O b' (H). 
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